240 research outputs found

    Coherent Integration of Databases by Abductive Logic Programming

    Full text link
    We introduce an abductive method for a coherent integration of independent data-sources. The idea is to compute a list of data-facts that should be inserted to the amalgamated database or retracted from it in order to restore its consistency. This method is implemented by an abductive solver, called Asystem, that applies SLDNFA-resolution on a meta-theory that relates different, possibly contradicting, input databases. We also give a pure model-theoretic analysis of the possible ways to `recover' consistent data from an inconsistent database in terms of those models of the database that exhibit as minimal inconsistent information as reasonably possible. This allows us to characterize the `recovered databases' in terms of the `preferred' (i.e., most consistent) models of the theory. The outcome is an abductive-based application that is sound and complete with respect to a corresponding model-based, preferential semantics, and -- to the best of our knowledge -- is more expressive (thus more general) than any other implementation of coherent integration of databases

    On Safe Folding

    Get PDF
    In [3] a general fold operation has been introduced for definite programs wrt computed answer substitution semantics. It differs from the fold operation defined by Tamaki and Sato in [26,25] because its application does not depend on the transformation history. This paper extends the results in [3] by giving a more powerful sufficient condition for the preservation of computed answer substitutions. Such a condition is meant to deal with the critical case when the atom introduced by folding depends on the clause to which the fold applies. The condition compares the dependency degree between the fonding atom and the folded clause, with the semantic delay between the folding atom and the ones to be folded. The result is also extended to a more general replacement operation, by showing that it can be decomposed into a sequence of definition, general folding and unfolding operations

    Charged Bilepton Pair Production at LHC Including Exotic Quark Contribution

    Get PDF
    The production of W+W−W^+ W^- pair in hadron colliders was calculated up to loop corrections by some authors in the Electroweak standard model (SM) framework. This production was also calculated, at the tree level, in some extensions of the SM such as the vector singlet, the fermion mirror fermion and the vector doublet models by considering the contributions of new neutral gauge bosons and exotic fermions. The obtained results for e+e−e^+ e^- and pppp collisions pointed out that the new physics contributions are quite important. This motivates us to calculate the production of a more massive charged gauge boson predicted by the SU(3)C×SU(3)L×U(1)X{SU (3)_C \times SU (3)_L \times U (1)_X} model (3-3-1 model). Thus, the aim of the present paper is to analyze the role played by of the extra gauge boson Z′{Z^\prime} and of the exotic quarks, predicted in the minimal version of the 3-3-1 model, by considering the inclusive production of a pair of bileptons (V±V^\pm) in the reaction p+p⟶V++V−+Xp + p \longrightarrow V^+ + V^- + X, at the Large Hadron Collider (LHC) energies. Our results show that the correct energy behavior of the elementary cross section follows from the balance between the contributions of the extra neutral gauge boson with those from the exotic quarks. The extra neutral gauge boson induces flavor-changing neutral currents (FCNC) at tree level, and we have introduced the ordinary quark mixing matrices for the model when the first family transforms differently to the other two with respect to SU(3)LSU(3)_L. We obtain a huge number of heavy bilepton pairs produced for two different values of the center of mass energy of the LHC.Comment: 23 pages, 8 figures, 3 tables. To be published in Nuclear Physics

    A pearl on SAT solving in Prolog

    Get PDF
    A succinct SAT solver is presented that exploits the control provided by delay declarations to implement watched literals and unit propagation. Despite its brevity the solver is surprisingly powerful and its elegant use of Prolog constructs is presented as a programming pearl

    Exploiting goal independence in the analysis of logic programs

    Get PDF
    This paper illustrates the use of a top-down framework to obtain goal independent analyses of logic programs, a task which is usually associated with the bottom-up approach. While it is well known that the bottomup approach can be used, through the magic set transformation, for goal dependent analysis, it is less known that the top-down approach can be used for goal independent analysis. The paper describes two ways of doing the latter. We show how the results of a goal independent analysis can be used to speed up subsequent goal dependent analyses. However this speed-up may result in a loss of precisión. The influence of domain characteristics on this precisión is discussed and an experimental evaluation using a generic top-down analyzer is described

    Goal dependent vs goal independent analysis of logic programs

    Get PDF
    Goal independent analysis of logic programs is commonly discussed in the context of the bottom-up approach. However, while the literature is rich in descriptions of top-down analysers and their application, practical experience with bottom-up analysis is still in a preliminary stage. Moreover, the practical use of existing top-down frameworks for goal independent analysis has not been addressed in a practical system. We illustrate the efficient use of existing goal dependent, top-down frameworks for abstract interpretation in performing goal independent analyses of logic programs much the same as those usually derived from bottom-up frameworks. We present several optimizations for this flavour of top-down analysis. The approach is fully implemented within an existing top-down framework. Several implementation tradeoffs are discussed as well as the influence of domain characteristics. An experimental evaluation including a comparison with a bottom-up analysis for the domain Prop is presented. We conclude that the technique can offer advantages with respect to standard goal dependent analyses

    Improving abstract interpretations by combining domains

    Full text link
    This article considers static analysis based on abstract interpretation of logic programs over combined domains. It is known that analyses over combined domains provide more information potentially than obtained by the independent analyses. However, the construction of a combined analysis often requires redefining the basic operations for the combined domain. A practical approach to maintain precision in combined analyses of logic programs which reuses the individual analyses and does not redefine the basic operations is illustrated. The advantages of the approach are that proofs of correctness for the new domains are not required and implementations can be reused. The approach is demonstrated by showing that a combined sharing analysis — constructed from "old" proposals — compares well with other "new" proposals suggested in recent literature both from the point of view of efficiency and accuracy

    Compile-time derivation of variable dependency using abstract interpretation

    Get PDF
    Traditional schemes for abstract interpretation-based global analysis of logic programs generally focus on obtaining procedure argument mode and type information. Variable sharing information is often given only the attention needed to preserve the correctness of the analysis. However, such sharing information can be very useful. In particular, it can be used for predicting runtime goal independence, which can eliminate costly run-time checks in and-parallel execution. In this paper, a new algorithm for doing abstract interpretation in logic programs is described which concentrates on inferring the dependencies of the terms bound to program variables with increased precisión and at all points in the execution of the program, rather than just at a procedure level. Algorithms are presented for computing abstract entry and success substitutions which extensively keep track of variable aliasing and term dependence information. In addition, a new, abstract domain independent ñxpoint algorithm is presented and described in detail. The algorithms are illustrated with examples. Finally, results from an implementation of the abstract interpreter are presented

    A polymorphic type system with subtypes for Prolog

    Full text link

    Abstraction-carrying code: a model for mobile code safety

    Get PDF
    Proof-Carrying Code (PCC) is a general approach to mobile code safety in which programs are augmented with a certificate (or proof). The intended benefit is that the program consumer can locally validate the certificate w.r.t. the "untrustcd" program by means of a certificate checker a process which should be much simpler, efficient, and automatic than generating the original proof. The practical uptake of PCC greatly depends on the existence of a variety of enabling technologies which allow both proving programs correct and replacing a costly verification process by an efficient checking proceduri on th( consumer side. In this work we propose Abstraction- Carrying Code (ACC), a novel approach which uses abstract interpretation as enabling technology. We argue that the large body of applications of abstract interpretation to program verification is amenable to the overall PCC scheme. In particular, we rely on an expressive class of safely policies which can be defined over different abstract domains. We use an abstraction (or abstract model) of the program computed by standard static analyzers as a certificate. The validity of the abstraction on ihe consumer side is checked in a single pass by a very efficient and specialized abstract-interpreter. We believe that ACC brings the expressiveness, flexibility and automation which is inherent in abstract interpretation techniques to the area of mobile code safety
    • …
    corecore